matrix

Penjumlahan Matriks

Operasi hitung matriks pada penjumlahan memiliki syarat yang harus dipenuhi agar dua buah matriks dapay dijumlahkan. Syarat dari dua buah matriks atau lebih dapat dijumlahkan jika memiliki nilai ordo yang sama. Artinya, semua matriks yang dijumlahkan harus memiliki jumlah baris dan kolom yang sama.
Matriks dengan jumlah baris 3 dan kolom 4 hanya bisa dijumlahkan dengan matriks dengan jumlah baris 3 dan kolom 4. Matriks dengan jumlah baris 3 dan kolom 4 tidak bisa dijumlahkan dengan matriks dengan jumlah baris 4 dan kolom 3. Kesimpulannya, jumlah baris dan kolom antar dua matriks yang akan dijumlahkan harus sama.
Operasi hitung penjumlahan matriks memenuhi sifat komutatif, asosiatif, memiliki matriks identitas matriks nol, dan memiliki lawan matriks. Lawan matriks A adalah matriks -A, di mana elemen-elemen matriks -A merupakan lawan dari elemen-elemen matriks A. Secara ringkas, sifat operasi penjumlahan matriks dapat dilihat pada gambar di bawah.
Sifat-sifat operasi penjumlahan matriks

Selanjutnya, kita akan mempelajari cara melakukan operasi hitung penjumlahan dua buah matriks. Penjelasan akan diberikan dalam bentuk contoh soal secara umum.
Contoh cara melakukan operasi penjumlahan pada matriks:
Penjumlahan Matriks
 
Bagaimana penjelasan mengenai penjumlahan matriks, mudah bukan? Sekarang kita akan masuk pada pembahasan selanjutnya yaitu operasi hitung pengurangan matriks. Simak uraian di bawah.

Pengurangan Matriks

Seperti halnya operasi hitung penjumlahan matriks, syarat agar dapat mengurangkan elemen-elemen antar matriks adalah matriks harus memiliki nilai ordo yang sama. Cara melakukan operasi pengurangan pada matriks dapat dilihat seperti cara di bawah.
Pengurangan Matriks
Cara melakukan operasi pengurangan dua matriks tidak jauh berbeda dengan penjumlahan matriks. Untuk lebih jelasnya, perhatikan contoh soal pengurangan matriks secara umum yang akan diberikan di bawah.
Contoh cara melakukan operasi pengurangan pada matriks:

Pengurangan Dua Matriks

 

Perkalian Matriks

Pembahasan operasi hitung matriks selanjutnya yang akan dibahas adalah perkalian matriks. Perkalian matriks yang akan dibahas di bawah adalah perkalian matriks dengan skalar dan perkalian matriks dengan matriks. Selengkapnya simak operasi hitung perkalian matriks di bawah.
Perkalian Matriks dengan Skalar
Cara melakukan operasi skalar pada matriks adalah dengan mengalikan semua elemen-elemen matriks dengan skalarnya. Jika k adalah suatu konstanta dan A adalah matriks, maka cara melakukan operasi perkalian skalar dapat dilihat melalui cara di bawah.
Perkalian Matriks dengan Skalar

Cara melakukan perkalian matriks dengan skalar cukup mudah dilakukan. Contoh soal cara melakukan perkalian matriks yang akan diberikan di bawah akan menambah pemahaman sobat idschool.
Contoh cara melakukan operasi perkalian skalar pada matriks:
Diketahui konstanta k = 2 dan sebuah matriks A dengan persamaan seperti di bawah.
  \[ \textrm{A} \; = \begin{bmatrix} 1 & 2 \\ 3 & 4  \\ 5 & 6  \\ 7 & 8 \end{bmatrix}\]
Maka hasil perkalian konstanta k dengan matriks A adalah sebagai berikut.
  \[ k\textrm{A} \; = 2 \begin{bmatrix} 1 & 2 \\ 3 & 4  \\ 5 & 6  \\ 7 & 8 \end{bmatrix}\]
  \[ k\textrm{A} \; = \begin{bmatrix} 2 & 4 \\ 6 & 8  \\ 10 & 12  \\ 14 & 16 \end{bmatrix}\]
Seperti yang telah disinggung sebelumnya, syarat dua buah matriks dapat dikalikan jika memiliki jumlah kolom matriks pertama yang sama dengan jumlah baris matriks ke dua. Ordo matriks hasil perkalian dua matriks adalah jumlah baris pertama dikali jumlah kolom ke dua.
Matriks A memiliki jumlah kolom sebanyak m dan jumlah baris r, matriks B memiliki jumlah kolom sebanyak r dan jumlah baris m, hasil perkalian matriks A dan B adalah matriks C dengan jumlah kolom m dan jumlah baris n.

Perkalian Matriks

Sebelum mengulas cara melakukan operasi perkalian dua buah matriks, sebaiknya kita perlajari dahulu sidat-sifat operasi perkalian dua matriks. Sifat-sifat operasi perkalian matriks meliputi sifat asosiatif, distributif, dan memiliki matriks identitas I. Sifat-sifat operasi perkalian matriks dapat dilihat pada gambar di bawah.
Operasi Hitung pada Matriks dan Sifat-sifatnya
Sifat-sifat matriks di atas dapat digunakan untuk memudahkan perhitungan dalam melakukan operasi hitung matriks.
Sekarang, pembahasan kita masuk pada perkalian dua matriks. Untuk pembahasan pertama kita akan mempelajari cara melakukan perkalian matriks dengan ukuran 2 \times 2 dan matriks dengan ukuran 2 \times 1.

Proses cara melakukan operasi perkalian matriksdengan ukuran 2 \times 2 dan matriks dengan ukuran 2 \times 1 dapat disimak pada pembahasan di bawah.
Diketahui: 

\[ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \]
  \[ B = \begin{bmatrix} x & y \end{bmatrix} \]

Perkalian dua matriks A \times B dapat diperoleh dengan cara di bawah.

Perkalian Matriks
 
Selanjutnya adalah perkalian dua matriks. Kedua matriks yang akan dioperasikan sama-sama berukuran 2 \times 2. Selengkapnya, simak pembahasan di bawah.
Diketahui:
  \[ P = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \]
  \[ Q = \begin{bmatrix} k & l \\ m & n \end{bmatrix} \]

Maka perkalian dua matriks P \cdot Q dapat diperoleh dengan cara di bawah.
 
perkalian matriks

Untuk lebih jelasnya akan ditunjukkan dari contoh soal operasi perkalian dua matriks seperti yang ditunjukkan di bawah.
Diketahui:
  \[ P = \begin{bmatrix} 2 & 3 \\ 5 & 2 \end{bmatrix} \]
  \[ Q = \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix} \]
Maka:
  \[ P \cdot Q = \begin{bmatrix} 2 & 3 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}  \]
  \[ P \cdot Q =  \begin{bmatrix} 2 \cdot 1 + 3 \cdot 4  &  2 \cdot 3 + 3 \cdot 2  \\ 5 \cdot 1 + 2 \cdot 4 & 5 \cdot 3 + 2 \cdot 2 \end{bmatrix} \]
  \[ P \cdot Q =  \begin{bmatrix} 2 + 12  &  6 + 6  \\ 5 + 8 & 15 + 4 \end{bmatrix} \]
  \[ P \cdot Q = \begin{bmatrix} 14 & 12 \\ 13 & 19 \end{bmatrix} \]

Komentar

Postingan populer dari blog ini

limit dan fungsi

Baris Dan deret Matematika

integral parsial